第二届机器学习与神经网络国际学术会议
2025 International Conference on Machine Learning and Neural Networks
大会简介
2025年机器学习与神经网络国际学术会议(MLNN 2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论,涵盖深度学习、计算机视觉、自然语言处理、强化学习等多个子领域,通过特邀报告、主题演讲、海报展示等形式,展示相关领域的最新研究成果和技术创新。我们诚挚邀请广大学者、研究人员和工程师踊跃投稿,共同推动学习系统与神经网络领域的发展,为行业发展贡献力量!
征稿主题
神经网络
- 深度神经网络
- 卷积神经网络
- 生成对抗网络
- 递归神经网络
- 神经网络结构
- 神经符号混合模型
- 神经网络的可解释性与可视化方法
- 神经网络在医疗、金融、能源等领域分析和研究
机器学习
- 宽度学习系统
- 机器学习
- 深度学习
- 强化学习
- 学习迁移
- 知识图谱
- 路径规划
- 迁移学习
- 生成对抗网络
- 对抗学习
- 对偶学习
- 分布式学习
- 元学习等
或其他相关主题均可投稿,可咨询会议秘书。
邀请嘉宾(2024)
王雪鹤 副教授,中山大学人工智能学院
王雪鹤博士目前在中国中山大学人工智能学院担任副教授。在此之前,她于 2019 年至 2021 年在新加坡理工学院 Infocomm 技术集群担任助理教授,并于 2015 年至 2019 年在新加坡科技与设计大学工程系统与设计支柱学院担任博士后研究员。她的研究兴趣包括多智能体系统、联邦学习、网络经济学和博弈论。
傅立宇 副教授, 马来亚大学
傅立宇于2012年在马来西亚马来亚大学获得博士学位。目前,他在马来西亚马来亚大学计算机科学与信息技术学院系统与计算机技术系担任副教授。他也是IEEE的高级会员。Lip Yee 和他的团队是 IRPA、E-Science、FRGS、ERGS、PRGS、HIR 和 IIRG 等资助的先驱接受者之一。2008 年,他成为第一位获得两项电子科学基金的人,担任首席研究员 。此外,他还是FCSIT第一个成功获得PRGS和ERGS资助的个人。
张施令 高级工程师,国网重庆市电力公司电力科学研究院
张施令,高级工程师,工学博士。长期从事高压及绝缘技术、理化检测技术的科研生产工作。特高压干式换流变压器套管和SF6气体绝缘穿墙套管的开发,已应用于我国特高压交直流工程建设。主持完成GIS故障检测感知技术与系统,荣获国际创新创业博览会优秀创新成果奖,被重庆电气工程学院授予优秀科技工作者称号。以第一作者在国内外期刊和国际学术会议上发表SCI/EI检索论文90余篇,在北京大学中文核心期刊发表19篇,获重庆市科技进步一等奖、中国水利电能质量管理协会特等省部级奖9项; 授权国际发明专利1项,国家发明专利和实用新型20项,软件著作权18项,国际国内会议报告20余篇,作为项目负责人主持了基础前沿省部级项目2项,国家电网公司总部科技项目3项。
论文投稿
MLNN 2025所有的投稿都必须经过2-3位组委会专家审稿,经过严格的审稿之后,最终所有录用的论文将以会议论文集出版,见刊后由期刊社提交至EI Compendex和Scopus检索。目前该出版社EI检索非常稳定。
About MLNN 2025
2025 International Conference on Machine Learning and Neural Networks
As a branch of the 6th International Conference on Computer Vision Image and Deep Learning (CVIDL 2025) MLNN 2025 will focus on the fundamental theories key technologies and practical applications of learning systems and neural networks encompassing various sub-fields such as deep learning computer vision natural language processing and reinforcement learning. By means of invited presentations keynote speeches sub-conference presentations poster sessions and other forms of communication channels available to us today; we aim to showcase the latest research findings and technological innovations in related fields from both academia and industry.
This conference provides an opportunity for participants to gain deeper insights into cutting-edge trends in the field of learning systems and neural networks while broadening their research horizons through academic exchanges with peers. It also encourages cross-disciplinary exchange of state-of-the-art research information that connects advanced academic resources with industrial solutions by bringing together talent acquisition strategies alongside technology development initiatives.
Important Dates
Full Paper Submission Date
March 31,2025
Registration Deadline
April 10,2025
Final Paper Submission Date
March 31,2025
Conference Dates
April 18-20 2025
Call For Papers
The topics of interest for submission include but are not limited to:
■ Neural Network
- · Deep Neural Network
- · Convolutional Neural Network
- · Generative Adversarial Network
- · Recurrent Neural Networks
- · Neural Network Structure
- · Neural Symbol Mixing Model
- · Interpretability and Visualization Methods of Neural Networks
- · Neural Network Snalysis and Research in Medical Financial Energy and other fields
■ Machine Learning
- · Width Learning System
- · Deep Learning
- · Reinforcement Learning
- · Learning Transfer
- · Knowledge Graph
- · Path Planning
- · Transfer Learning
- · Generative Adversarial Network
- · Adversarial Learning
- · Dual Learning
- · Distributed Learning
- · me
Publication
All accepted full papers will be published in the conference proceedings and will be submitted to EI Compendex / Scopus for indexing.
Note: All submitted articles should report original results experimental or theoretical not previously published or being under consideration for publication elsewhere. Articles submitted to the conference should meet these criteria. We firmly believe that ethical conduct is the most essential virtue of any academic. Hence any act of plagiarism or other misconduct is totally unacceptable and cannot be tolerated.